Density approximations for multivariate affine jump-diffusion processes
نویسندگان
چکیده
منابع مشابه
Saddlepoint Approximations for Affine Jump-Diffusion Models
Affine jump-diffusion (AJD) processes constitute a large and widely used class of continuoustime asset pricing models that balance tractability and flexibility in matching market data. The prices of e.g., bonds, options, and other assets in AJD models are given by extended pricing transforms that have an exponential-affine form; these transforms have been characterized in great generality by Du...
متن کاملEfficient estimation of default correlation for multivariate jump-diffusion processes
Evaluation of default correlation is an important task in credit risk analysis. In many practical situations, it concerns the joint defaults of several correlated firms, the task that is reducible to a first passage time (FPT) problem. This task represents a great challenge for jump-diffusion processes (JDP), where except for very basic cases, there are no analytical solutions for such problems...
متن کاملMarkov chain approximations for symmetric jump processes
Markov chain approximations of symmetric jump processes are investigated. Tightness results and a central limit theorem are established. Moreover, given the generator of a symmetric jump process with state space Rd the approximating Markov chains are constructed explicitly. As a byproduct we obtain a definition of the Sobolev space Hα/2(Rd), α ∈ (0, 2), that is equivalent to the standard one.
متن کاملDeviation Inequalities for Exponential Jump-diffusion Processes
In this note we obtain deviation inequalities for the law of exponential jump-diffusion processes at a fixed time. Our method relies on convex concentration inequalities obtained by forward/backward stochastic calculus. In the pure jump and pure diffusion cases, it also improves on classical results obtained by direct application of Gaussian and Poisson bounds.
متن کاملAnalytical representations for the basic affine jump diffusion
The Basic Affine Jump Diffusion (BAJD) process is widely used in financial modeling. In this paper, we develop an exact analytical representation for its transition density in terms of a series expansion that is uniformly-absolutely convergent on compacts. Computationally, our formula can be evaluated to high level of accuracy by easily adding new terms which are given explicitly. Furthermore, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Econometrics
سال: 2013
ISSN: 0304-4076
DOI: 10.1016/j.jeconom.2012.12.003